_____ Class ____

Study Guide

Section 1: Meiosis

CHAPTER 10

In your textbook, read about meiosis I and meiosis II.

Label the diagrams below. Use these choices:

Complete the table by checking the correct column(s) for each description.

Description	Mitosis	Meiosis
10. Involved in the production of gametes		
11. Involved in growth and repair		
12. Promotes genetic variation in organisms		
13. Consists of one nuclear division		
14. Produces daughter cells that are genetically identical		
15. Involves two sets of nuclear divisions		
16. Produces daughter cells that are not identical		
17. Involves the synapsis of homologous chromosomes		
18. Occurs during asexual reproduction		
19. Results in four haploid gametes		
20. Also called <i>reduction division</i>		

Study Guide

Date

CHAPTER 10 Section 2: Mendelian Genetics

In your textbook, read about how genetics began and the inheritance of traits.

Write the term or phrase that best completes each statement. Use these choices:

cross-pollination recessive	dominant self-fertilization	gametes trait	inherited
1. Mendel was the first person to suc	cceed in predicting how t	raits are	
from generation to generation.			
2. In peas, both male and female sex	cells, which are called $_$, are in the
same flower.			
3	occurs when a male ga	mete fuses with a	female gamete in the
same flower.			
4. Mendel used the technique called		to bree	ed one plant with another.
5. Mendel studied only one		at a time and a	nalyzed his data
mathematically.			
6. In individuals with a heterozygou	s genotype, the		allele of a trait is
hidden by the expression of the ot	her phenotype.		
7. In individuals with a heterozygou	s genotype, the		allele of a trait is
visible in the phenotype.			
In your textbook, read about Punnet	t squares.		
Complete the Punnett square by filling	in the missing informatio	n.	

A student crossed true-breeding pea plants that had purple flowers (P) with true-breeding pea plants that had white flowers (p). All of the offspring had purple flowers. Then the student crossed two plants from the F₁ generation. The student's Punnett square is shown at right. What information should the student put in each blank? Remember, the dominant allele is always written first.

Study Guide, Section 2: Mendelian Genetics continued

In your textbook, read about the inheritance of traits and Punnett squares.

Use each of the terms below only once to complete the passage.

dihybrid	gene	genotypes	monohybrid	phenotypic ratio	
A cross between plant	ts that involv	ves one characteris	stic is called a (13)		
cross. Mendel also per	rformed (14)	cros	sses, which involve two	
(15)		pairs, with p	ea plants. When he cr	cossed two pea plants that	
were heterozygous for	both seed s	hape (<i>Rr</i>) and for	seed color (<i>Yy</i>), he ob	served a 9:3:3:1	
(16)		among the se	eeds of the offspring.	A Punnett square shows	
the possible phenotyp	bes and (17)		of the	e offspring.	

Complete the Punnett square by filling in the missing information.

Possible gametes	RY	Ry	rY	ry
RY	<i>RRYY</i> round, yellow	18.	19.	<i>RrYy</i> round, yellow
Ry	20.	21.	22.	23.
rY	24.	<i>RrYy</i> round, yellow	25.	26.
ry	27.	28.	29.	30.

In your textbook, read about probability.

Refer to the Punnett square above. Respond to the following statement.

31. Find the probability that a wrinkled, green seed will result.

Date

Study Guide

Section 3: Gene Linkage and Polyploidy

In your textbook, read about genetic recombination and gene linkage.

CHAPTER 10

Match the definition in Column A with the term in Column B.

Column A		Column B
 1. genes that are located on the same chromosome	Α.	chromosome map
 2. shows the location of several genes	B.	genetic recombination
 3. Drosophila melanogaster	C.	linked genes
 4. an outcome of independent assortment	D.	fruit fly

For each statement below, write true or false.

- **5.** Crossing over occurs more frequently between genes that are close together on a chromosome.
- 6. Gene linkage was first studied by using garden peas.

Wing length gene — Body color gene ——	
Leg number gene —	
Eye size gene ———	

7. Scientists call a drawing like the one shown above a chromosome map.

8. Chromosome map percentages represent actual chromosome distances.

In your textbook, read about polyploidy.

Respond to each statement.

- **9. Recall** the name for the occurrence of one or more extra sets of all the chromosomes in an organism's cells.
- **10. State** the term for an organism with the chromosome designation *3n*.